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This report is the final form of a paper presenting a
study of nonlinear effects in optical data processing. Parts
of the study have been discussed previously. The present
report not only brings together theseiparts but also includes
results which were obtained during the past two years but were
not reported before. It also contains results of specialized
investigations which were carried out over an extended period
and not completed until recently. The investigation of spec-
troscopic plates according to methods developed under the
grant is an example of such a case. It should be mentioned
that the approach developed in this study represents an advance
which for the first time facilitates accurate determination
of optimum operational conditions for photographic recording.
It also allows comparisons to be made of different photo-

graphic and other types of recording materials and processors,



ABSTRACT: Methods for the analysis of the effects of non~-
linearities in optical data processing are considered. A new
method in which nonlinear characteristics are represented by
Tchebyscheff's expansions is developed. It is characterized
by improved accuracy and simplicity of application. Procedures
for the determination of the coefficients and a computer pro-
gram are described. The procedures and the computer.program

were used for analysis of spectroscopic photographic plates.
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1. INTRODUCTION

One of the outstanding features of photographic and
other optical recording processes is their nonlinearity.
In optical data processing, nonlinear effects introduce
error signals of various kinds which in some cases such
as the detection of signals in noise may reduce the sig-
nal~to-noise ratio considerably and seriously li%it-its
practical application. In holography, nonlinearities
generate ghost images which interfere with weak signals.

Two general approaches have been used for the analysis
of nonlinear effects in optical data processing and holo-
graphy. In the first, methods suitable for arbitrary or
fairly general signals have been employed. Among these are
the method as used by Davenport and Root (1958), in which
the functional form of the nonlinearity is used directly,
and the Fourier Transform method described by Middleton
(1960). Use of these methods, however, has been confined
to rather simple forms of nonlinear characteristics. Many
characteristics, however, do not have such simple forms.
When these methods are applied to more complicated or real-
istic characteristics, the resulting eqguations usually
become exceedingly involved.

In the second general approach, the class of signals,
for which the nonlinear effects are obtained, has been re-
stricted to sinusoids. By doing this, the analysis can be

extended to more realistic characteristics without excessive



complications. Methods following this approach have been
primarily based on the Taylor Series expansion. An early
description of a version of this expansion method was given
by Espley (1933) and more recent references include Ryder
(1964) and Chirlian (1965).

In the literature on optical data processing and holo-
graphy, the first approach has been used by Kozma (1966)
and Friesem and Zelenka (1967). Kozma employed an error-
function-limiter form of the characteristic for nonlinear-
ities in photographic recording processes. This model dem-
onstrated the presence of amplitude and phase distortions
in recorded signals. Friesem and Zelenka assumed an odd
power-law model of the form

f(x) = x iva_l,
where v 2 0, for describing photographic recording in holo-
graphy. The resulting nonlinear effects were shown to
cause "ghost" images to appear in the reconstruction of
scenes containing point sources.

Literature on the second approach has dealt with two
applications. In the first, photographic nonlinearities
have been described by the so-called gamma-law model. This
method has been used by Lamberts (1961) and Little (1966).
Lamberts derived expressions for the harmonic distortion
of recorded sinuscidal exposure patterns, assuming such a

model. Little demonstrated that thesé distortions can be



minimized in positive photographic processes by proper ad--
justment of exposure conditions and development times. This--
second paper, however, includes experimental results which
show nonsatisfactory agreement between the harmonics obtained
from the gamma-law model and from actual photographic proc-
esses.

The second application of the sinusoidal signal approach
has been developed by Wilczynski (1961). In this method, the
Taylor Series expansion is applied directly to the character-
istic curve of the photographic process under investigation
and the harmonics of recorded sinusoidal exposure patterns
are obtained from the expansion. Wilczynski applied this
method to the characteristic curves of Ilford chromatic
plates and was able to calculate the harmonics obtained from
a wide range of exposure conditions and development times.

In most instances, the calculations agreed quite well with
accompanying experimental measurements.

The present investigation was begun as an extension of
Wilczynski's approach. .Taylor series expansions were employ-
ed along with curve-fitting procedures for evaluating the
expansion coefficients. During the application of this
method, difficulties were encountered in accurately repre-
senting the characteristics of photographic processes. This
led to a study of expansion methods. Use of the Tchebyscheff
expansion was suggested for this purpose (Tischer, 1967) and

subsequently employed. Theoretical and experimental results
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showed this method to have advantages over the Taylor series
both in accuracy and ease of application.

In the following considerations, the effects of nonlin-
earities on sinusoidal signals are first described in a gen--
eral manner. The nonlinearities are shown to create harmeon-
ic distortions of the signals. An equivalent noise-to-sig-
nal ratio (NSR) is introduced next. It describes the degree
of distortion by a single figure. The conséquences of these-
distortions on the operation of an idealized optical corre-
lator are then described. Specific examples demonstrate the
resulting degraded performance.

Methods for determining the harmonic coefficients of
distorted signals are then developed. Taylor, Legendre,
Tchebyscheff, and Fourier expansions are. considered for this
purpose. In many applications, the expansions must be trun-
cated. The consequences of truncation are investigated. The -
results show the advantages of the Tchebyscheff method.

The remainder of the report deals with the application
of the Tchebyscheff method to actual nonlinear problems. A
numerical method for obtaining the Tchebyscheff coefficients
from nonlinear characteristics is developed first. This
method is subsequently implemented in a Fortran program. The
program facilitates the comparison of nonlinear character-
istics by computing the harmonic coefficients and noise-to-

signal ratios. It also allows determination of operational



conditions under which the nonlinear effects of a specifiec
characteristic are minimized. The program is then used to
analyze the nonlinearities of type 649-F spectrbscopiC'plates
which are widely employed in optical data processing and
holography.

It should be mentioned that application of the described
method of analysis is not limited to opticél recording but
can also be used for the investigation of other processes
where signals are transmitted through componenﬁs having non-

linear characteristics.



2. NONLINEAR EFFECTS

2.1 Effects of Nonlinearities on Sinusoidal Signals

The amplitude behavior of a (zero-memory) device having.
a nonlinear functional relation between its input and output
variables may be represented in terms of a characteristic
curve such as that shown in Fig. 1. The curve relates the
output variable y to the input variable x and is a graph of
the transfer function

y = £(x). (1)
If the input variable consists of a signal varying about
some value X which is called the operating point of the
device, then

S, (£) =X~ Xo, 2)

where Sl(t) represents the input signal which is a function
of some other variable t. 1In general, the operating point
of the device may be chosen anywhere on the characteristic.
The form of the output signal thus depends on the location
of the operating point as well as the input signal, The

output can thus be represented by

S.[Sit8),x0] = 9-494, (3)

where S, represents the output signal, and Y, corresponds to
the output of the device at the operating point. Substitu-

tion of Egs. (1) and (2) into the right hand side of Eq. (3)
yvields

S.Is (), x, 1 = FI8, () +x,.] - Yo - | (4)



e bt

= £(x)

S, (£)

Figure 1. Effects of a nonlinear characteristic on a sinusoid  ‘



If Sl(t) is an arbitrary sinusoidal signal given by

S,(¢+) = A cos (wt+d)) (5)

where A is the amplitude of the signal, w is its radian fre-

quency, and ¢ is its phase at t = 0, Eg. (4) may be written

S:,_("Z)A)xo):CEAC55(wf*¢)+xvo]“'doJ (6)

where the dependence of S, onwand ¢ is understood. The func-

2

tional form of S, then depends on both the operating point

2
and the amplitude of the sinusoidal input. Equation (6)

shows that

Sa(t+3F, 4, x.) = Sal(As¢)%0). -

The function Sz, thus, is periodic in t with fundamental
radian frequency w. If the function f is piecewise contin-
uous, S, can be expressed by a convergent Fourier series in
t. The series can be written as

b(A, %) &
= =g+

Sa(t,4,2.) Z b, (A, X,) coslrwt rgulh, x001, (8)
=1

where bn and ¢n represent respectively the amplitude and

th

phase of the n harmonic.

Additional information about S, may be obtained by let-

2
ting
(wt + ¢) = 6, (9)

in Eq. (5). Eg. (6) becomes

Sz(e,A,xo)=PEAcose+x°]-go (10)



Thus
Sa(-e, Aa Io) 282 (G,A) x"’)) (11)

showing that S, is an even function in 6. The Fourier

2
series expansion of SZ(G'A'Xd)' in 6, then contains only:
terms of the type cos(n6). Comparing this to Eg. (8) shows

né

n(wt + ¢) = nwt + no, (12)
or

¢, = ng. (13)
Thus, the phase shifts of the various harmonics of Eg. (8)

do not depend on A, X 1 Or the functional form of £(x). This

series can then be written as

S.,A; %)= éﬁff;r’_’_‘.:l +§;‘ bulA,xo) cosln(we+dd], (1)
The effects of the nonlineé?ity of f£(x) on the input sinusoid
are apparent in this expression. The term bl cos (wt + ¢)
corresponds to the input Sl' The device introduces no phase
shift in this signal. The term bo/2 corresponds to a D. C.
bias and the various terms bn cos [n(wt + ¢)] correspond to
harmonic distortions of S1° The nonlinearity produces no
subharmonics of the input sinusoid. This effect occurs only
when the input consists of more than one frequency.

Equation (14) indicates the dependence of the harmonic
coefficients on the operating point of the nonlinear device

X and the amplitude of the sinusoidal signal A. TIf such

OI
a device is used in a system where linearity is desired,
knowledge of the dependence of these coefficients on X, and

A would show quantitatively the nonlinear effects and reveal
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optimum input conditions for their minimization. Subsequent
sections present methods of obtaining these coefficients

from characteristic curves.

2.2 The Description of Nonlinear Effects in Optical Data

Processing

In the previous section, a device having a nonlinear
characteristic was shown to create distortions of an input
sinusoid. For a signal given by

S.(*&):Acas(u{:) (15)

the output of the device was described by

Sa(k) = %‘li—ébwms("wﬂ, (16)
where the b coefficients depend on the amplitude of the in-
put sinusoid A and the operating point of the device. A
complete description of the nonlinear effects consists of
specifying these coefficients. In many instances, however,

a complete description of the effects is not needed, and
a single quantity describing their severity is sufficient.

In electronic circuit theory a quantity called the
"total harmonic distortion" is used for describing the
effects of nonlinearities on sinusoidal signals (Ryder, 1964).
For a distorted sinusoid, this quantity is given by the ratio -
of the r.m.s. value of the sum of the harmonics to that of

the fundamental. In terms of Eq. (16), it becomes

F p21=
:D___ [ :Z‘“] . _ (17)



1l

The square of this quantity given by

2 =
D = s b (18)

represents the ratio of the total power carried by the har-

monics to that of the fundamental. If the harmonics are
considered as an equivalent noise generated by the nonlin-
~earity, Eq. (18) is equivalent to the reciprocal of the well-
known "signal-to-noise power ratio of communication theory
(Schwartz, 1959, p. 226). The term equivalent noise is used
to describe the harmonics here since the usual communication
theory definition of noise assumes that it is independent of
the signal. The harmonics generated by nonlinearities are
signal dependent and cannot strictly be called noise. The
signal-to-noise ratio is defined by
SNR = 1=

P’
where Py is the signal power and P is the noise power.

(19)

Eg. (18) thus represents an equivalent noise-to-signal ratio

or o
P 2, 0n

NSR = M=2
P be

(20)
Two other quantities expressing nonlinear effects in terms
of signal and équivalent noise power are defined as the

"signal-power fraction"

spr= o
= Pt Py ? , (21)
and the "noise-power fraction"
P
NPE = —— . (22)

Ts+Pa
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In terms of the harmonic coefficients, these begome

.
SPF = :?‘ )

A=)

(23)
and

%

NPF =

Z b (24)
usy

All of these descriptions of nonlinear effects are equiva-
lent in that they are functionally related. The knowledge
of any one permits the calculation of the others without
additional information.

In optical data processing systems, multiple noise
sources can exist. For example, photographic processes, in_
addition to being nonlinear, contain fluctuations in image
structure known as granularity. This effect can be consid-
ered as the addition of noise to the image. If such a pro-
cess 1s to be fully evaluated, both effects must be consid-
ered. For this reason, the amenability of the above quan-
tities to include additional noise sources was investigated.
Two sources, having equivalent noise powers given by N, and
N, were assumed. The noise N, gives rise to Dy NSRl, SNRl,
and NPFl, while N2 produces D2, NSR2, SNRZ, SPFZ, and NPFz,
The addition of the two sources gives rise to the following

expressions for the combined quantities

SD=JD,2+ >,

(25)

NSR = NSR +NSR, (26)
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(sme.) (SNR)

SNR = )
spF.) (SPF
SPF = ( ) (SPF.) , (28)
SPF, +SPF, - (SPF,)) (SPF,)
NPE, + NPE, —2(NPE,Y(NPFL)
NPF = g (29)
I= 3I(NPR)(NPF,)

These equations show that the quantity NSR is most easily
calculated when two sources are present. The simple addition
rule indicated by Eq. (26) can be extended to include mul-
tiple sources. For these reasons, the NSR description of

nonlinear effects was chosen for use in subsequent work.
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3. NONLINEARITIES IN OPTICAL CORRELATION PROCESSORS

In this section, the effects of nonlinearities on the
operation of a typical optical correlator are described. The
correlator is assumed to operate as part of a larger elec-
tronic system for the reception of pulse-frequency modulation
telemetry. The reception system (Rochelle, 1963) is used in.
satellite and space probe communications. Optical recording
processes are assumed to transform the electrical signals
into photographic transparencies which form the input to
the correlator. These processes can contain nonlinearities
which degrade the correlator operation. A description of the
reception system and an idealized model of its operation with
linear recording processes are first presented. Nonlineari-
ties in the optical recording are then introduced and the
resulting effects on the correlation processing described.
Finally, three numerical examples are presented. In these,
typical optical recording characteristics are used to demon-

strate quantitative effects on the correlator operation.

3.1 Mathematical Model of the Operation of an

Optical Correlator and Related Reception System

The reception system receives a sequence of frequency
modulated RF pulses. The pulses are of time-length T and
begin at intervals of 2T. During each pulse, a single RF
frequency is transmitted. This frequency corresponds to‘one
of a set of N possible signals. The detection process con-.

sists of determining which of these signals is present in
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each pulse. Previous to the correlation processing, the RF
pulses are demodulated to form a sequence of low-frequency,
time-limited sinusoids. The sinusoids corresponding to the
various signals are harmonically related. A member of the
demodulated signal set can thus be represented, during the

occurrence of a pulse, by

.,F'P(.e) = A cos (Pwot), (30)

where; p is an integer (1XP2N) indicating which signal is
present, A is the signal amplitude, W is the fundamental
radian frequency of the signal set, and t is time. The
pulse length T is an integer number of periods of the fun-
damental radian frequency LA Under this condition, the
various demodulated signals form an orthogonal set over the
pulse interval.

The optical correlator acts as a channelized, matched
filter for the detection of the demodulated signals. The
reference transparency thus contains N channels, each having

a replica of one of the sinusoids of the demodulated set.

The incoming signals are continuously recorded on the signal - -

transparency and optically correlated with the channels of
the reference,
In the optical recording processes, a time-to-space
transformation
d=v.t, (31)
is made, where d is a spatial variable, and Vo is the re~-

cording velocity. The spatial length of a recorded signal
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is thus
L .'%To (32)
As a function of d, a member of the signal set becomes
- W
Fo(d) = Acos(p J2d). (33)

w

In order to clarify the equations, the quantity (62) is nor-
o

malized to one. The spatial representation of a signal is

then

.Fp(d) :AcoS(Pd)) (38)

during the occurrence of a pulse. These functions are op-
tically recorded. The amplitude transmittance of the resul-
tant signal transparency is described by Sp(x), where p
identifies the signal present and x represents a spatial
variable (in the direction of processing) on the transpar-
ency. Similarly, the transmittance of a channel of the
reference transparency is given by Rq(y), where g (152giN)
denotes the channel and y is the appropriate spatial vari-
able.

The output of channel g of the correlator with signal

p present is described by

Ya
- A
Gem s E LSO Ry

where L is the aperture length of the correlator (spatial
equivalent of the pulse length) and“‘sp (y+z) is the image
of the recorded signal at the reference transparency plaﬁe

(after displacement by the correlation variable z). The
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quantity qu is the cross-correlation integral. Since L is
an integer number of periods of the fundamental spatial
frequency of the signal set, the various undistorted signals
are orthogonal over the aperture.

In the remainder of this section, the effects of the
pulsed nature of the signals on the correlation integrals
are neglected. The time limitation of the signals simply
imparts a triangular envelope of length 2Li.. to the periodic
correlation functions described here. This simplification
allows the nonlinear effects to be observed without undue
complication.

If the optical recording processes are linear, the am- -
plitude transmittance of the signal transparency is des-~

cribed by

gp(z) T A, +Q; Cos(px),
k4 (36)

where p denotes the signal present, and a, and a, are deter-
mined from the recording process used. Similarly, the trans-

mittance of channel g of the reference transparency is

Rq(8) = bot b, c05(24), (37)

where b0 and bl are determined by its recording process.
When used in Eg. (35), the bias terms in these eguations can
be neglected since the correlator is assumed to contain a
"d. c. stop." Substituting the resultant expressions into

(35) gives

Y/
Cep®) =t S, a/bcoslpasn)] costaygddy. (s
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Evaluation yields
0,L#P

Cqp(®) = La,b, cos(pe)rL=P- (39)

An output thus appears in the channel of the correlator
which corresponds to the input signal and indications in the
others are zero. This corresponds to normal operation of
the system.

When the optical recording processes are nonlinear, the
signal and reference transparencies contain harmonic distor-
tions as described in section 2.1l. The resulting amplitude
transmittance of the signal transparency with signal p pre-

sent can be expressed by the series
o
Se(x) = So + 2 Sm Cos(mpx), (40)
2

where the s harmonic coefficients result from the nonlinear
characteristic of the signal recording process. In a like
manner, the transmittance of channel g of the reference

transparency is given by

Rq.(Y) =r¢+,§m cos(nq,4); (41)

where the r harmonic coefficients result from the character-
istic of the reference recording process, The harmonic dis-

tortions can be expressed as equivalent noise-to-signal

=2 sz
NSR¢ = T M ) | (42)
S"z'

ratios given by
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and

NSR, =
' ‘ (43)
where the subscripts s and r denote, respectively, the signal
and reference transparencies. The correlator can thus be
considered to contain two interval equivalent noise sources.
The effects of the nonlinearities on the operation of -
the correlator are obtained by substitution of (40) and (41)

into (35), which gives

Ha .
CtP(%)= L) { = Swcosmp g+ 2]1%

=Y W=}

[%Ln\_c:rs(nig)] A:} (44)

when the d.c. terms are omitted. This expression can be

rewritten as

s, 2 -sz.. [mp(g¥a) ( A
o\ = os[Mp(4+3)] cos(n .
Cep® MZ_.‘ W RS A feeiani A (45)

Due to the orthogonality properties of the cosine functions,

i f‘-/z.
+ J, o8 Cwmp(4+2)] cos(ugu) d Y
- o,Mp#ni

1 cos(mpe), wp=u1q , (
- (46)

and Eg. (45) can be written
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e~
Cyp ()= & éﬁmm cos(mp ) Sump,ug

138
~d
N

where § is one foxr mp = ng and zero otherwise. The
mp, ng

output of the correlator is thus non-zero in those channels
having a common frequency with the signal transparency.
Outputs exist in channels corresponding to incorrect de-
tection of the signal. The output of the correct or signal

channel is

[ake

- b s .
[CQP(‘E}]P,:%“ = M:%m Vim Cos(mp ),

fanm

L {48)
Two other specific cases are:
s“ i -s»?p
EC’QP(%)J@ZP-“ = 7 Sam nTos (2mp ), (49)
and
< =2 Z. SwMmecos{npa)
Eﬂ‘tﬁ(%ﬂ@:% S S fam Sos inpe). (50)

which indicate the output of the channels corresponding to
twice and half the frecusncy 2f the signal channel. Similar
expressions can be obtained for other channels.

The equivalent cutput powers (mean sguared amplitudes)
of the various channels of the correlator serve as convenient
measures of the severity of the nonlinear effects. Expres-

sions for these can be opntained directly from (47) as

Ak

P p = “’égf bRl g

d Swmp,nq s (51)



21
where P p indicates the equivalent output power of chénnel
g with signal p present. This quantity can be normalized
with respect to the equivalent power in the signal channel.

The resulting expression

bo-3 3 2.
R E ST Smp,ng
EPRge~ [’P‘L‘:‘\t‘-l’ g o2 2 )
mz) mom

(52)

indicates an "error-power ratio" existing beﬁween'the outputs
of channel g and the signal channel. For the signal channel,
this quantity becomes unity. The definition of the EPR

is similar to that of the noise~to-signal ratio introduced
previoﬁsly. It represents the ratio of the power of an equiv-
alent noise source (unwanted output) to that of the desired

signal,

3.2 Examples

A variety of optical recording processes can be em-
ployed to produce transparencies for use in optical correla-
tors. The form and extent of the nonlinearities involved
in these processes can vary considerably. Three examples
which represent typically occurring nonlinearities are con-
sidered. In each example, it is assumed that a single
characteristic describes both the signal and reference re-
cording processes. The harmonic series of the resultant

transparency for each characteristic are derived and the
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corresponding NSR's and EPR's calculated.

The characteristic for the first example is linear.
That of the second follows a square law and that of the third
an exponential. A linear characteristic can result from use -
of a small operating region within a larger nonlinear char-
acteristic or from using pre-distortion techniques to cancel
nonlinear effects. Characteristics approaching square law"
and exponential curves can be obtained, respectively, from
positive and negative photographic processes used in con-
junction with primary light modulators such as cathode ray
tubes.

The characteristics for the optical recording processes-
of the three examples are shown in Figures 2 through 4.
They describe the variation of the amplitude transmittance
of a resulting transparency with input voltage. In the -
examples, the signals are assumed to be recorded with a bias
level of .5v and an amplitude of .3v. The spatial repre-

sentations of the electrical inputs are thus

Va(d) =.5+.3 cos(pd) . (53

In the linear case, the amplitude transmittance of the
signal transparency with signal P present becomes

S‘P(x) =.85+ .8 cos(px), (54)

and the transmittance of channel g of the reference is

Ref4) =.5+.3 cos (24). (55)
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Since no distortions are present, the corresponding noise-to-
signal ratios are zero. With signal p present, the correla-
tor output in the signal channel is
Eczpfz‘ﬂpz,&: (045) cos(pz). 56
Outputs of the other channels are zero and the corresponding
error-power ratios vanish as shown in Table 1. The correla-
tor thus operates normally.
In the square law example, the amplitude transmittance
of the transparencies are described by
Sp(x) = [.§+.3 C’oé(Px)jz)
and
Rel(ad=Ls+ 3 cos(qu)]5

or, after expanding

Sp(x) =(238) + (3) cos(px) +(-048) cos(2px) (57)

and

Re(4) = (225) +(3) cos(gy)+(-048) c03(294). 56)

The signal transparency and reference channels thus contain
second harmonic distortions. The corresponding noise-to-
signal ratios are

1

NSR, .225 x 10 —, (59)

and
NSR_ = .225 x 107 . | (60)
Because of the harmonics, unwanted ocutputs occur in channels

corresponding to twice and half the frequency of the signal

channel. The resulting error-power ratios, calculated from



Table 1.

2

Error-power ratios corresponding to three optical

recording characteristics

6

Signal-Reference
Channel Relation

Characteristie-

qa/p Linear Square Law Exponential
1 1.0 1.0 1.0
1/2, 2 0 .2249 x 10°1 .2184 x 107t
1/3, 3 0 0 .2045 x 1073
1/4, 4 0 0 1690 x 10°°
2/3, 3/2 0 0 4471 x 107°
3/4, 4/3 0 0 .3458 x 1077
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the harmonic coefficients of (57) and (58), and the definition
(52) are shown in Table 1.

In the exponential case, the form of the recorded signal
can be obtained from a Taylor series expansion of the charac-
teristic about the bias point. Neglecting orders higher.than
the fourth, the amplitude transmittance is given by
Ta) =L [i-2(e-s)+20-0*- F (v-.6)>+  (v-.9) 4], 1)
Substituting (53) in this expression and expanding the re-
sulting powers of the cosine function into multiple angles
gives

Splx) = (4017) ~(2307) Cos (px) + (03 41) Cos(2px)

~(.0033) cos(2pr) +(.0003) Cos(apx ) y (62)

for the signal transparency and a similar expression for the
reference channels Rq(Y)@ The noise~to-signal ratios corres-

ponding to these expressions are

NSR_ = .2206 x 1071, (63)

and

.2206 x 1071, (64)

i

NSR

x
Harmonics higher than the fourth do not appear. in the ex-
pression (62) due to the truncation of the Taylor series.

The higher order terms of this series give rise to additional

harmonics and small “contributions to the ones retained above.
These are neglected here. The four harmonics of Eqg. (62)

give ‘rise to outputs in the channels listed in Table 1. The
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error-power ratios shown were calculated from the coeffic-
ients of (62) and the definition (52).

In this example, the Taylor series expansion was employ=-
ed to obtain the harmonic coefficients of the recorded sig-
nals. Versions of this method have been used by several
authors as described in the summary of the literature. Other
series expansions may be used, however, The Taylor method:
and some of these are described more thoroughly in the next

section.
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3

4, EXPANSION METHODS FOR DETERMINING HARMONIC COEFFICIENTS

4.1 Introduction

The harmonic coefficients of the output of a sinusoid-
ally excited (zero-memory) nonlinear device may be obtained
by expanding, within the operating region, the characteris-
tic function of the device. Equations can be developed re-
lating the expansion coefficients of the characteristic to
the output coefficients. The Tchebyscheff (Tischer, 1967),
Legendre, Fourier, and Taylor expansions are among those
suitable for this purpose. Equations relating the output -
harmonic coefficients to the expansion coefficients of these
series are derived in this section. Relative advantages of
the various methods are also discussed.

Two versions of the Fourier series method are presented.
In method A, a direct expansion of the nonlinear character-
istic is performed within the operating region. This method
has a disadvantage in that if the characteristic is contin-
uous within this region ([a,b]), but does not meet the
boundary condition

f(a) = £(b), (65)
its periodic extension is discontinuous. The resulting
Fourier series is slowly convergent (Lanczos, 1966). This
problem can be avoided, provided f(x) is continuous on [a,b],
by extending the characteristic symmetrically about either
of the end points. The periodic extension of the resulting

function is continuous and its Fourier "series more quickly
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convergent (Lanczos, 1966). This series can then be used
to represent the characteristic.function within the operating
region. This procedure is employed in method B. More soph=-
isticated schemes, not considered here, can be used to fur-
ther increase the rate of convergence of the Fourier series
provided successively higher derivatives of £(x) are contin-
uous (Lanczos, 1966).

In order to clarify the equations of this &esmnersigers
section, the following notation is adopted. The nonlinear
characteristic is termed f£(x). The operating region is
assumed to be [-1,1] and the input sinusoid given by

X = cos 6. ' - (66)

The output of the nonlinear device is then f(cos 8).  Since

this is an even function in 6, its Fourier series expansion

has the form

f(cose) =% %oekbchs(ke), | (67)
where

Nig
bk=;2;j;43(cos_e) cos(ke) Ae)

(68)

and the Neumann symbol €y is given by
€o = Ly (69)
€] = €5 = o0 = 2. - {70)

The definition of the symbol is used throughout this chapter.

In the derivations which " follow, the orders of integra-



tion and summation of infinite series of functions are inter=-- -

changed at various times. This procedure is justified by

Arzela's theorem (Apostol, 1957).

4.2 Taylor Series

The Taylor series expansion, about x = 0, of f(x) on

[-1,1] is given by

£(x) = 2 a,x" (71)
[ =14}
where
Qu = ‘5‘-\—1?(1)] (72)
nl Lgn x=0

If £(x) and its derivatives are continuous on an interval
containing [-1,1], the series converges (Kaplan, 1952). Re~-

placing x by cos & in Egqg. (71) gives

[ ]
F(cos o) = ?_ a. (cose)’, (73)
E=Y o]

which may be substituted into the Eq. (68) for the kth output

harmonic coefficient yielding

W b2
b, = %“_J; [éodu(cOssbv‘_] cos(ke) do. (74)

The order of integration and summation may be interchanged

in this expression so that

bk: %;: b Q, fo (cas@)mc.’.os(ke) Ae_ (75)

M=o
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The integrals in this expression can be evaluated using the

expansion (Mangulis, 1965)

(cos@)" = (z.) Zem ("‘ W‘") cos (me),

M=0,2y-- (76)

for even n and

(cose)' = (L) > (““’““) Cos(mo), (77)

ms1,3,..

for odd n where the large brackets denote binomial coeffic-
ients. Substituting these into the integrals of (75) and

interchanging the orders of integration and summation gives

ﬁT?cos e cos(ke)de =
(‘L‘) Z é‘m (n M)Jcos(me) cos(ke)deg, (78)

m=9,2,.

for even n and

s Ceoso)"
Jo (cose) cos(ke) deo =

(“L)n 'Z.. (a__‘) f Cos (m@) cos(kd) de, (79)

m=1,3,...

for odd n. Evaluation of the remaining integrals gives

.
_f;(cose)"’ a‘os(ke') cig =4 O, n<k |
] "
1"’% ("'2’) (w-k.))nak (80)
- J
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for all n. Equation (75) thus becomes

=0 P\ w
b, =2 aw (£) weke ) (81)

ﬂ:k, k‘z' el Rt

This expresses the output harmonic coefficients bk in terms

of the Taylor coefficients a .

4,3 Fourier Series -~ Method A

The direct Fourier series expansion of f(x) on [-1,1]

can be written as

()
F(x) =% Z es[Cncostmrmay s dusin(nry], (82)
Rao
where
Cu= [ 23 cos(wmxd du, (83
-1
and

{
dw:aj:\‘?(m) sin (nTra) d X.
- (84)

A sufficient condition for the pointwise convergence of this
expansion on [-1,1] is that f(x) is sectionally continuous
and square integrable on [-1,1] (Jackson, 1941). Replacing

X by cos 8 in Egq. (82) gives

O
Fleose) =+ = €u[Cn cos(nmaose) +dusin(niresse)] - (85)

nto

which is pointwise convergent for 02685m. The equation giving
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the kth output harmonic coefficient is

' T
by =2 %})fog(fose) cos(ke)d e. (86)

Substituting the series of Eg. (85) and interchanging the

orders of integration and summation gives

=1 g gw[cw ITCos(v\Trc.ase) cos(ks) de
T noo S

T
b AWLSW(V\WCasé} cos(kad) Je]
+ (87)

The integrals here may be evaluated by using the expansions

(Mangulis, 1965)

e v,
Cos(nT cose) = . €y (-1)7* Tj (aw) cos(Qe) (88)

2=0,2,...

and

Sim (W cosQ) :25,3’(‘1")% B'L(vm-) cos(le), (89)

where Jl is the 1th order Bessel function of the first type.

Substituting these into the integrals of Eg. (87), and again

interchanging orders of integration and summation gives
B
_f; Qos(WTTcos®) <Cos (ke)do =

oo 2 I
Q;Z@"lél(“) /IJL(uW)_LGos{Qe) cos(ko) cbeJ (90)
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and

Tt )
S, swu(wiress®) cos (ko) o=

.2’..
2 4,3)“( ‘) J.’e(wrr)j Cos(R0) cos (ko) de.
(91)
Evaluation yields
- .
J; COS(chose)Ccfs(ke)Ae =
o, k odd
Y2 T (), keven , (92)
and
J:T‘sm(vwv cos®) cos(ke) do=
(“‘) T Je(nw) ; k odd
O) k Ve . ® ‘ (93)
Substituting these results into (87) gives
k/,
b= (0" S e, cu T, () |
=0 (94)
for even k and
=2¢1)F 5 dw T (wor) | (95)

W= p

for odd k. These are the resulting expressions for the out-

put harmonic coefficients.
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4,4 Fourier Series - Method B

A Fourier series expression for f£(x) on [-1,1] may be
obtained by defining a related function g(x) on [-2,2]. On
[0,2], g(x) is the translation of f(x) given by

g(x) = £(x - 1). ' (96)
On [-2,0], g(x) is extended evenly. Because of the even-
ness property, the Fourier series expansion of g(x) on [-2,2]
contains only cosine terms. This expansion is then given by

Bx) =L £ €udt cos (Bx) |
wzo (97)

where -

2
- wIr
a. = J 8(x) cos (*Fx) dx. e
The coefficients an can also be evaluated in terms of f(x) as

. \
Q, = J;-F(X») Cas[”;_r(;cﬂ)] ax. (99)

Replacing x by x +1 in Eqg. (97) and using Eqg. (96) gives

O .
Fex) =L 3 ecaw cos [EF (xw1) ] (100)

un=

[+

or

A=o

Fexy =4 Zewaeos(TIeos(SFx)- s (T sun (4 )] o

Substituting cos € for x in this expression and using the

resulting series in the equation for the kth output Fourier
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coefficient gives

, L
b=t [ { Z [ cos(4E) cos (4 eoso ) -

sw (2T) sin (ﬂgwse)]z cos(ke) do. (102)

Interchanging the order of integration and summation yields

PO T
bk-_--%_ %oémawtcos(ﬁgLCos(%T¢ase) cos(ko) do -~

iy
sin () [ s (F cose) coslke) A@] (103)

The integrals in this expression may be evaluated using the
expansions (88) and (89) where nm is replaced by E%. Using
these as in the previous derivation gives

31y
Léos(%cosej coz(ke) do=

| »
Gﬁ) T :ﬂa(ﬁgf) ) k Ve 104
O, kodd ' (104)

and

J:“;m (‘%}“@ose) cos (ke e =

{ , kR evew
O T3, () ) kedd. (205)

Substituting these results in (103) gives the equations for

the output harmonic coefficients:

h@. g W2 R
by= (~1) 7 2_ 8w @u(-1) T (FF), (106)

ROJ Z)»I L4
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for even k and

b= 20 Z_aw ()T T, (1),

h‘:‘)g)lll (107)
for odd k.

4.5 Legendre Series

The Legendre series expansion (Kaplan, 1952) of £(x)

on [-1,1] is given by

- [~
frz) = _‘% aw, Pulx) | (108)
where
2aun+t !
Aw = “‘%‘—__/_I £x) ?\\(34) dl) (109)

and Pn is the Legendre polynomial of order n. A sufficient
condition for the pointwise convergence of the series (106)
on [~1,1] is that f(x) is sectionally continuous and sguare
integrable on [-1,1] (Jackson, 1941) ., The Legendre poly-

nomials can be defined by

Po(x) 1, (110)

Pl(x) X, (111)

and the recurrence relation

P (¥ = B2 x Pu(n) - 2 Py (),

- (112)
or by Rodregues' formula
| " |
Pulx) = —0— i%;k f(xiq)“] (113)

z2*nl
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Replacing x by cos 6 in Eq. (108) gives

Fleose) = Z anPhlcose). (114)

The pointwise convergence of (106) on [-1,1] implies the
pointwise convergence of this expression for 0<8<w. Equation
(112) may be substituted into the equation for the kth out-

put harmonic coefficient,

b= 2 [ Flecos o) cos (ko) Ao, (115)
giving
by = & JI:E?;E?Cl P Osasealj coz (ko) A
LS T ol Z O Tn - (116)

Since the series (114) is pointwise convergent on (0,w), the
order of integration and summation in this expression can be

interchanged so that

' N
b, = %1-_ fﬁaw[fo Tu(cose) cos(ike) Ao . (117)

1126}

The integrals in this expression can be evaluated using the

expansions (Mangulis, 1965)

2 e, T (axdel ) T(nedut

'P“ (coz e)=
=02, .., (ﬁiiéﬁ(iilu)‘

L
T cos (£8), (118)

for even n and

P (coso) = 2 ﬁ. D) D(eept)
% Lin -
2=(,3,,.. (%BE (%L) 1

los (-26)) (119)

for odd n, where T represents the gamma function. Substitu-

ting these expansions in the integrals and again inter-
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changing orders of integration and summation gives

‘f;ﬁ?w(ws o) cos(ke) de =

[ U I,(n-n\) T (mu—(') Tr
L s e = J L= . (120)
™St T qayy Je e
¢ 2 y.‘;_ l
for even n and
TR (cos0) cos (ko) do =
" T (=23 T aedi NN
Z2 5 L (= )"( %—Lchs(Qe)Cas(ks) do .
TAEyse (eebyl (mdyl e ' (121)

for odd n. Evaluating the integrals in these expressions

gives

.Cﬂ—’Pn (cose) cos(ke) Ao =

o, M:L: . (122)
 f wele Al ayk 4\
(s2)) ()l 7T

for both even and odd n. Substitution of this result in

(117) yields

by =2 £ a, TR Tl
B0 - .
n=k, k42, (ude)l (M;L)‘. (123)

This expression, then, gives the output harmonic coeffic-

ients bk in terms of the Legendre expansion coefficients.
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4.6 Tchebyscheff Series

The Tchebyscheff expansion (Snyder, 1966) of a function

f(x) on the interval [-1,1] is given by

-
flxy=4 2 €nanTulx) (124)
nzo
and
- 2 VY Ty (2
s [ EmE

Jl—xz

where Tn(x) represents the Tchebyscheff polynomial of order
n. A sufficient condition for the convergence of (124) is
that f£(x) is piecewise continuous on [-1,1]. The Tcheby-
scheff polynomials can be defined by

T, (x) =1,

il

Tl(x) Xy

and the recurrence relation

Ty () = 2T (x) - T, (x),

(126)
or the "Rodrigues" formula
w n l i .3
1) 2N Ya. d wo2
T, (x) = (¢ C(1-x? = | (1=x3?) "%
wl(x) T ( gy [ . (127)
The polynomials can be alternately expressed as
Tu(x) = cos (necos=t ) . (128)

When cos 6 is substituted for x,

Ta(coese) = Cos(ne), (129)
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Equation (124) then can be written as

G
fleose) =L 5 eu a, cos(ne), (130)

neo
and Eq. (123) as

I
a. = %L Llcoso) cos(ne) Ao, (131)

These equations are recognized as those of Fourier expansion
of the output of the nonlinear device. The various Tcheby-
scheff polynomials which form the expansion of f(x) thus
correspond to the harmonics of the output signal. The har-
monic coefficients bk of Eq. (68) are then given simply by
P = 3
Because of this unigue property of the Tchebyscheff poly-

(132)

nomials, the harmonic coefficients of the output of the
nonlinear device can be obtained directly from the expansion
of its characteristic. The other expansion methods des~-
cribed do not have this property. It should be noted, how-
ever, that the equivalence of the Tchebyscheff and harmonic
coefficients exists only when the change of variable x = cos 6
is made. When the amplitude of the cosine is other than one,
the right-hand side of Eg. (129) is replaced by a series
expression. The resulting equations for the bk involve in-
finite sums. This difficulty can be overcome in the general

case by appropraate normalization of the expansion interval.
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4.7 Relative Advantages

All of the preceding expansion methods can be used to
determine the effects of nonlinearities on sinﬁsoidal signals.
The harmonic coefficients of the output are given, in terms
of the various expansion coefficients, by the relations
derived.

The Tchebyscheff expansion method has significant
advantages in that its coefficients are equal to those of
the output harmonics. The summations required by the other
methods are avoided. This is of value since the sums must
be truncated in most applications. The truncation intro-
duces errors into the expressions for the output harmonic
coefficients and convergence must be considered.

Use of any of the methods requires the expansion co-
¢fficients to be obtained from the nonlinear characteristic.
The advantages of any one of the methods, in this respect,
are not readily apparent. The ease of calculation of the
various sets of coefficients depends on the form of the
given characteristic. 1In specific cases, any one set may

be most easily evaluated.



44
5. COMPARISON OF THE EXPANSION METHODS

This section presents a comparison of the use of the
various expansion methods for obtaining the harmonic coeffi-
cients of the output of a nonlinear device. Approximations
to the coefficilents are obtained from truncated Legendre,
Fourier, and Taylor expansions of orders two through nine.
These approximations are compared with values given by the
Tchebyscheff method. Output harmonics of orders one through
four are considered.

Computer programs were used to obtain the Tchebyscheff
(RCH) , Legendre (LEG), Fourier (FOU), and modified Fourier
(FOB) , and Taylor (LMS) expansion coefficients for the char-
acteristic shown in Figure 5. This curve is typical of
high~-gamma photographic processes used in optical data pro-
cessing and holography. Except for the Taylor series method,
numerical integration procedures were used to obtain the
expansion coefficients. The Taylor series coefficients
were obtained by the least-squares method of curve fitting.
The Tchebyscheff coefficients were obtained using the.
method described in the following section.

The expansion coefficients were then used in the ex-
pressions derived in section 5 for the output harmonic
coefficients. The results for harmonic coefficients of
order one through four given by truncating the expansions
at orders two through nine are shown in Figures 6 through

9. The trend of convergence to the Tchebyscheff values as
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the expansion order is increased can be seen.

The figures demonstrate the advantages of using the
Tchebyscheff expansion method. The TCH values are given
directly by the first four expansion coefficients. Higher
order terms are unnecessary. The convergence of the approx-
imations given by the other methods wvaries somewhat with
the output harmonic order. In most instances, at least
sixth order expansions were necessary for good convergence.

The improved convergence of the FOB method is apparent.
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6. A NUMERICAL METHOD FOR COMPUTING TCHEBYSCHEFF COEFFICIENTS

Previous sections demonstrate the advantages of using the
Tchebyscheff expansion method for determining the output
harmonic coefficients of a nonlinear device. The application
of this method to actual problems necessitates the determina-
tion of the Tchebyscheff coefficients from the characteristic
functions. This section describes a numerical method to
accomplish this.

In the study of nonlinear devices, the characteristic
function (or transfer characteristic) may be given either
analytically, graphically, or numerically. The method pre-
sented here can be used with characteristics given in any
of these forms. It consists of representing the character-
istic by a piecewise linear approximation and then calcula-
ting analytically the Tchebyscheff coefficients of this rep-
resentation. Since the only approximations introduced are
those in the piecewise representation of the characteristic,
this method seems to have advantages over the direct appli-
cation of numerical integration.

Figure 10 shows a typical nonlinear characteristic f(x)
and a region where the Tchebyscheff expansion is desired.

The region is given by

- <
| x xol < A, (133)
Making the change of variable
X-X
o=, (134)

A
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the region in u is
[u] 5 1. (135)

The expansion coefficients are then given by either

|
A, (A, %) = %‘:f £ (aur xo) Tulu) da, (136)
a e

or
-
Ay (Ay Xo ) = %jF(Acosemo) cos(ne) de,

° (137)
as was shown previously. These equations can be simplified
by defining

gf{u) = f{au + xo), (138)
in the region given by (135). Egquations (136) and (137) then

become

Wn(A,x,) = 5 [ BTl g,

Vicas (139)
and
.
Q. (A, xo) :%IQ(COSQ) cos(ne) Aa.
o (140)

The function g(u) can be represented by a piecewise
linear approximation consisting of N segments as shown in
Figure 11. When g(u) is continuous, the error in the approx-
imation can be made arbitrarily small by increasing the num-
ber of segments N such that the length of each becomes
small. If a set of N + 1 values of u and g(u) including the

endpoints of the interval |u| X 1 are known, the equations
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of the corresponding segments can be computed. Denoting
the values of u and g by us and g(ui), where 12i3iN+1, the
Tchebyscheff expansion coefficients for the approximation to
g(u) are given by

N Us

(R4
An=25S f @ rdsu) Ta(w)
T d - W)
¢=| 1 Vica=z (141)

where (ci and diu) represents the equation for the ith seg-

ment. The constants c; and di can be computed by solving
the equations

cy + diui = g(ui), o (142)
and

cy + dui+l = g(ui+l), (143)
which give

g(u,) u, - g(u, ,,) u,
c. = i i+l i+l i , (144)

u, - u.
+ i+l i

and

g = g(ui+l) - g(ui)
s (4
* Yiv1 - Y4

(145)

Equation (139) can be evaluated by making the change of vari-
able
u = cos 9, (146)

so that it becomes

cos™'(u;)

. N )
Q=57 2. ) (Ci+ dicos0) cos(neddo. (147

P cesTuy,)
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Expansion of the cosine products allows this expression to

be rewritten as
oS R(uz)

(Cz““d s g) éﬁé) (148)

2
q T]-a
I=t “Gos~(a44,)

9 CCS (u)_)
@, = m; [‘-d;-i’CzCoséé—-Ld cosze) ] de, (149)

= Cos™ (U4,
Gas™ (U3

7 N
avi 2 2 [ {hdsoesnare] +o;coscne)
128 Cos™ Mzw)

and

+ kd; cos[fue1) 9]3 de 5 (150)

for n22.

Evaluation of the integrals gives

‘cost(U)

a, = fc o +d;smea]

2‘:.' Cos"‘Cui‘H‘) ) (151)

cos™(uy)

N
= Lod.
Q= 3¢ > Eﬁ%éie +CiSime + - dzsm(ze)l

3= Cos gy ) (152)

and
cos™(u;)
a.= Zf[d SME(MT)@] . Ci Sin (ne) dé siffuey 6] :
W 2(u-1 " T R teen) (153
<os” (W54, )

for n22. The Tchebyscheff expansion of this piecewise linear
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approximation to g(u) can thus be computed numerically from
Egs. (144), (145), and (151) through (153). The applicabil-
ity of this method to numeric data is evident. The data
points simply become the ug and g(ui). If the data are
given in graphic or analytic form, the us and g(ui) can be

respectively measured or computed.
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7. A FORTRAN PROGRAM FOR COMPUTING HARMONIC COEFFICIENTS
AND NOISE-TO-SIGNAL RATIOS

In the preceding sections, a method employing the Tcheby-
scheff expansion was developed for determining the output
harmonic coefficients of a nonlinear device. This section
describes development of a computer program called henceforth
"ODP 11" which uses this method. The program serves as an
example of the application of the method and it facilitates
the analysis of actual nonlinear characteristics. It can be
used to compare characteristics and to determine which por-
tions of a specific characteristic give rise to minimum sig-
nal distortions.

From a set of input data points taken from a character-
istic, the program computes Tchebyscheff expansions of sub-
regions. The expansions are computed using the method pre-
sented in the previous section. The subregions are specified
by the user and can correspond to any consecutive subset of
the set of input data points. The expansions are computed
through an order,not exceeding 9, specified by the user. In-
put data sets can be taken from characteristics directly or
from Hurter-Driffield curves representing photographic
processes. When this second option is used, the program
automatically transforms the logarithmic data into amplitude
transmittance and exposure guantities.

For each subregion, the program output contains the

Tchebyscheff expansion coefficients, equivalent noise-to-
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signal ratio, and identification data. The program is repro-
duced in section 11 and a flow chart is shown in Figure 12,
The four digit numbers shown in the blocks of the flow chart
correspond to the statement numbers of the program.

For each characteristic, the subregions are determined
by a list of amplitude parameters and a spacing parameter.
These are part of the required program input and correspond
numerically to numbers of points of the input data set. Thus,
an amplitude parameter of ten corresponds to a region spanned
by ten points of the input data set. If the data points are
equally spaced, a specific amplitude parameter implies a
fixed subregion length. For each amplitude parameter listed,
the program varies the location of the subregion by incre-
ments corresponding to the spacing parameter. This process
is begun at the beginning of the input data set and is con-
tinued until the region reaches the end of the set. This
process is repeated for each listed amplitude parameter.

For each characteristic - _ ' .-, the program input
consists of three cards containing parameters followed by
data cards. The first parameter card contains identifica-
tion symbols for the characteristic, a type parameter, the
number of points in the data set, the number of amplitude
parameters listed, the step parameter, a normalization para-
meter, and an error parameter. The type parameter is set
equal to zero if the function is to be expanded as given.

When the type parameter is one, the input data is assumed



to be in the form of a Hurter-Driffield curve. The higher
order Tchebyscheff coefficients printed in the output are
narmalized with respect to the first order if the normali-
zation parameter is one. Otherwise, the coefficients are-
left unnormalized. The error parameter should be set equal
to an estimate of the accuracy of the function values in
the input data set. The second parameter card contains a
list of the amplitude parameters and the third contains a

list of the corresponding orders to which the expansions
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are to be computed. Each of the cards of the data set con--

tains an argument value followed by the corresponding func-
tion value. These cards are read in order of increasihg

value of the argument.



|BEGIN |

DIMENSION DATA
STORAGE
0001-0003

%
READ INPUT DATA

-

NORMALIZE INTERVAL
T [-1,1]
0022-0024
Eq. 134

{

FOR CHARACTERISTIC [
0004-0011

)

IS INPUT DATA IN
HURTER-DRIFFIELD
FORM?

0012

No Yes

CHECK FOR
ERRONEOUS DATA
0025-0033

DETERMINE FUNCTIONAL
VALUES FOR INTERVAL
0034-0036

CONVERT DATA TO

0013-0015

AMPLITUDE TRANSMITTANCE}
IAND EXPOSURE QUANTITIES

COMPUTE TCHEBYSCHEFF
EXPANSION COEFFICIENTS
0037-0066
Eqs. 144-145, 151-153

i

e

!

HAVE RESULTS FOR

ALL SPECIFIED INTERVALS

BEEN COMPUTED?
0016-0017

DELETE COEFFICIENTS
LESS THAN NOISE LEVEL
0067-0071

Né: l Yes

PRINT RESULTS
RETURN FOR

MORE DATA
0091-0107

DETERMINE

\
COMPUTE NSR,
DNSR, 1/S
0072-0084

Eg. 20

%

=2 NEW INTERVAL
0018-0021

NORMALIZE COEFFICIENTS
IF SPECIFIED
0085-0090

Figure 12. Flow chart for the program ODP-11
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8. ANALYSIS OF THE CHARACTERISTIC
CURVES OF TYPE 649-F SPECTROSCOPIC PLATES

The developed fortran program was used to analyze the
characteristic curves of Kodak, type 649-F Spectroscopic
Plates. This serves as an example of the use of the program-
outlined in the preceding section. It is also an analysis of
the characteristics of plates which are widely used in opti-
cal data processing and holography. The results reveal op-
timum exposure and development conditions for the use of
the plates.

The curves were obtained in Hurter-Driffield form from
a publication of the Eastman Kodak Company (Kodak, 1967).
They represent 10 second exposure to tungsten illumination
and development in Kodak developer D-19 at 68° F. Each
curve is identified by its corresponding development time.
The curves were enlarged photographically to approximately
4" x 8" size. An accurate set of data was then taken from
each curve and the corresponding amplitude transmittance vs.
exposure data was obtained using a simple fortran program.
This data was then accurately plotted on graph paper. The
resulting curves are shown in Figure 13. Final data for
use in the program was taken from these curves. This pro-
cedure allows the final data to be in equal interval form.
Thus, a set number of consecutive data points corresponds
to a specific region length.

In order to determine the accuracy of the data taking,
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three independent observations of 96 points on the 2 minute
characteristic were made. A short fortran program was then
written to estimate the standard deviation of the observa-
tions. The resulting estimate was .0033. This standard-
deviation estimate was subsequently used as the error para-
meter in the program.

The final data set for each of the 649-F characteristic
curves consisted of approximately 90 points. The amplitude
parameters used were 11, 21, 31, etc. and the step parameter
was 5. Results from the program are shown in Figures 14
through 21. In the figures the input exposure is assumed to
be of the form

E(x)= Eo+t A Cos(wy x) y (154)

where EJ is the bias level and A is the amplitude of the
sinusoid, and W represents its spatial radian ffquencyc
Figures 14 through 17 show the output fundamental (undis-
torted signal) amplitude as a function of bias level and
input sinusoid amplitude A. Figures 18 through 21 show the

output NSR as a function of bias level and input amplitude.
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9. CONCLUSIONS AND RESULTS

The results of section 5 confirm the theoretical advan-
tages of the Tchebyscheff method in obtaining the output
Fourier coefficients of a sinusoidally excited norlinear
device. All of the other expansion methods require higher-
order terms in order ﬁo approximate a given harmonic coeffi-
cient. This is also the case for the Fourier series method
although significant improvements were obtained by the modi-
fication of the expansion procedure (Fourier Series - Method
B).

Results of the analysis of the characteristic curves of
type 649-F spectroscopic plates show that the effects of the
nonlinearities can be minimized for a given characteristic
by choosing bias levels appropriate to the amplitude. In-
most cases, the optimum bias corresponds to the maximiza-
tion of the output fundamental amplitude. Figure 22 shows
the NSR's (at optimum bias) of the four characteristics as
a function of this amplitude. From the graph, it can be
seen that under optimum-bias conditions the 9 minute char-
acteristic exhibits minimum nonlinear effects. The output
fundamental amplitude .4 represents a threshold wvalue. For
output amplitudes less than this, all of the characteristics

give NSR's less than .02 with optimum bias.
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11. COMPUTER PROGRAM

ODPl1l: NONLINEAR CHARACTERISTIC ANALYSIS
PROGRAM

DIMENSION NP (15),NORD(15),X(105),YIN(105),

XN (105) ,AT(15,105,10)

DIMENSION Y (105),X0(15,105) ,LSAVE(105),FER(15,
105) ,SNR(15,105)

DIMENSION ERPS(15,105)

READ INPUT DATA

READ(1,20) PR,PR1,PR2,NTYPE,N,NAMP,NSTEP,NORM
,ERR

FORMAT (2A4,A2,515,F10,4)

READ (1,21) (NP(I),I=1,NAMP)

READ(1,21) (NORD(I),I=1,NAMP)

FORMAT (20I5)

PR= IDENTIFICATION SYMBOLS

NTYPE=0=INPUT DATA IS FUNCTION TO BE EXPANDED
NTYPE=1=INPUT DATA IS IN HURTER~DRIFFIELD FORM
N=NUMBER OF DATA POINTS

NAMP=NUMBER OF AMPLITUDES

NSTEP=NUMBER OF INTERVALS IN STEP
NORM=0=COEFFICIENTS ARE PRINTED

NORM=1=HIGHER ORDER COEFFICIENTS ARE NORMALIZED
TO FIRST ORDER

ERR=NOISE LEVEL OF DATA (SET=0 IF NOT USED)
NP(I)= NUMBER OF POINTS IN ITH AMPLITUDE
NORD(I)= HIGHEST ORDER TO BE FITTED TQO ITH
AMPLITUDE

Do 1 1I=1,N

READ(1,22) X(I), YIN(I)
FORMAT (2F10. 4)

IF (NTYPE-1) 30,31,30
DO 32 I=1,N
X(I)=10.**X(I)
YIN(I)=10.**(-YIN(I)/2.)

X=EXPOSURE VARIABLE
YIN=DENSITY VARIABLE

DETERMINE LOCAL INTERVALS
DO 9. K=1,NAMP

DO 8 L=1,N
NP1=NP (K)
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COMPUTER PROGRAM (Continued)

0019
0020
0021

0022
0023
0024

0025
0026
0027
0028

0029
0030
0031
0032
0033

0034
0035
0036

0037
0038
0039
0040

0041
0042

0043
0044
0045

0046
0047
0048
0049
0050

nao

Q0o

eReNe

200
202
204

203
201

301

100

101
104

NB=(L-1) *NSTEP+1
NE=NB+NP (K) -1
IF (NE-N) 3,3,9

NORMALIZE LOCAL INTERVAL TO (-1,1)

DOVZ I=NB,NE
NUM1=I-NB+1
XN(NUM1)=(2.*X(I)-X(NE)-X(NB))/(X(NE)-X(NB))

SEARCH FOR XN OUTSIDE (-1,1)

DO 201 I=1,NP1

IF (1.-XN(I)*XN(I)) 200,201,201
WRITE (e,202) I,XN(I),L,K
FORMAT (' *, XN(',I3,')=',Ell.4,' IN LINE','
OF AMPLITUDE',I3)

IF(XN(I)) 203,203,204

XN (I)=.999999

GO TO 201

XN(I})=-.999999

CONTINUE

ADJUST Y VALUES

Do 4 J=1,NP1
NUM2=NB+J~1
4Y (J)=YIN (NUM2)

COMPUTE EXPANSION

M=NORD (K) +1
DO 5 I=1,M
N1=NP (K) -1
AT(K,L,I)=0.

AT(K,L,I)= TCHEB COEFF FOR AMP(K), INTERVAL(L)
sORDER+1=1

Il=1-1
I2=1-2

D( 60 J=1,N1

IF(XN(J)) 301,100,101

ARG1=ATAN (SQRT (1. -XN (J) *XN (J) ) /XN (J) ) +3.
1415926

GO TO 104

ARG1=1.5707963

GO TO 104

ARG1=ATAN (SQRT (1.-XN(J) *XN (J) ) /XN (J))
IF(XN(J+1)) 303,102,103
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COMPUTER PROGRAM (Continued)

0051

0052
0053
0054
0055
0056
0057
0058
0059

0060
0061

0062
0063

0064
0065
0066

0067
0068
0069
0070
0071

0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083

(e RPN

QO Qo0

303

102

103

105

107

108

109

60
5

6
7

13

14

15

ARG2=ATAN (SQRT (1.~-XN (J+1) *XN (J+1) ) /XN (J+1))
+3.1415926

GO TO 105

ARG2=1.5707963

GO TO 105

ARG2=ATAN (SQRT (1.-XN (J+1) *XN (J+1) ) /XN (J+1))
AO= (Y (J) *XN (J+1) ~Y (J+1) *XN(J) ) /(XN (J+1) -XN (J))
Al=(Y(J+1) =Y (J) )/ (XN(J+1)-XN(J)) .

IF (I-2) 107,108,109
AT(K,L,I)=AT(K,L,I)+ (AO* (ARG1-ARG2)+Al* (SIN(
ARG2)))

GO TO 60

AT(K,L,I)=AT(K,L,I)+(.5%A1* (ARG1-ARG2)+A0%* (
SIN (ARG1l) ~SIN (ARG2))+1.25*%A1* (SIN(2.*ARG]) -
SIN(2.*ARG2)))

GO TO 60

AT(K,L,I)=AT(K,L,I)+(.5*%A1% (SIN(I2*ARG1l)-SIN
(I2*ARG2)) /12
1+A0* (SIN(I1*ARG1l)-SIN(I1*ARG2)) /Il
2+.4*A1* (SIN(I*ARG1l) -SIN (I*ARG2))/I)

CONTINUE

AT(K,L,I)=AT(XK,L,I)/1.5707963
XO(K,L)=.5% (X (NB)+X(NE))

CHECK FOR COEFFICIENTS LESS THAN NOISE LEVEL

Do 7 I=1,M
ATAB=ABS (AT (K,L,I))
IF (ATAB-ERR) 6,7,7
AT(X,L,I)=0.0
CONTINUE

COMPUTE NSR,1/S

ERPS (K,L) =ESTIMATE OF NUMERICAL ERROR IN FER(K,L)
SNR(K,L)=RECIPROCAL OF SQUARED FUNDAMENTAL
AMPLITUDE

FER(K,L)=NOISE TO SIGNAL RATIO

SIG2=AT (K,L,2) *AT (K,L,2)

HAR2=0.0

DO 13 I=3,M

HAR2=HAR2+AT (K,L,I) *AT (K,L,T)

IF (SIG2) 15,14,15

FER(K,L)=0.0

ERPS (K,L)=0.0

SNR(K,L)=0.0

GO TO 8

FER(K,L)=HAR2/SIG2

SNR(K,L)=1./SIG2

ERR1=ERR*ERR
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COMPUTER PROGRAM (Continued)

0084 ERPS (K,L)=ERR1/SIG2
c
c NORMALIZE COEFFICIENTS IF SPECIFIED
C
0085 IF (NORM~-1) 8,18,8
0086 18 IF (AT(X,L,2)) 16,8,16
0087 16 DO 17 I=3,M
0088 17 AT(XK,L,I)=AT(K,L,I)/AT(XK,L,2)
0089 8 LSAVE (K) =L
0090 9 CONTINUE
C
c WRITE RESULTS
C
0091 DO 11 I=1,NAMP
0092 NUM3=NP (I)
0093 AMP=X (NUM3)-X(1)
0094 WRITE(3,24) PR,PR1,PR2,N,NP(I),NORM,ERR
0095 24 FORMAT ('1l',224,A2,' N=',I3,' Np=',I3,' NORM=',
12,' ERR=',E10.3)
0096 WRITE(3,25)
0097 25 FORMAT(' ','NB',4X,'XZR0O',5X,'XINT',5X,

'YINT',5X, '"NSR',9X,
1'DNSR',8X,'1/s"',9X, '"TCHEBYSCHEFF EXPANSION
COEFFICIENTS')

0098 =NORD(I)+1

0099 LS=LSAVE (I)

0100 bo 11 J=1,LS

0101 " NB=(J-1) *NSTEP+1

0102 NE=NB+NP (I) -1

0103 XINT=X(NE) -X (NB)

0l04 YINT=YIN (NE)-YIN (NB)

0105 11 WRITE(3,26) NB,XO(I,J) ,XINT,YINT,FER(I,J),
SNR(I,J),
1(AT(1,J,K),K=1,MM)

0106 26 FORMAT('0',I3,1X,3F9.3,1X,8(E1ll.4,1X) /69X,
5(E11.4,1X))

0107 GO TO 500

0108 END



